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Abstract
In this paper, we investigate the synthesis of ternary reversible circuits in the
absence of ancilla bits. We demonstrated that 2-qudit ternary Swap, NOT and
1-controlled-NOT gates are universal for realization of arbitrary ternary n-qudit
reversible circuits without ancilla qudits, and all even ternary n-qudit reversible
circuits can be constructed by ternary NOT and ternary 1-controlled-NOT gates
without ancilla qudits. The realization approach is constructive. This result is
significantly different from the binary case.

PACS numbers: 03.67.Lx, 03.65.Fd

1. Introduction

Quantum computation connects ideas from computer science and physics [1–3]. Reversible
circuits are a necessary subclass whose realization is required for any quantum computer to
be universal. Binary logic circuits play an important role in classic quantum computation
as they are used to construct oracles, for instance in Grover algorithm [4]. We consider
the extension of unit of memory to the ternary-valued domain, where the unit of memory is
the qudit [5–7] with the three basic states |0〉, |1〉 and |2〉. Three state quantum systems have
recently been discussed in the framework of cryptography [5], and the concept of a qudit cluster
state has been proposed [6]. Qudit systems received further study in [8, 9] wherein quantum
hybrid gates acting on tensor products of qudits of different dimensions were discussed. The
ternary-valued reversible circuits are experimentally feasible in the context of the linear ion
trap scheme for quantum computing [10]. Recently synthesis of d-level systems showing
asymptotic optimality was also proposed [7]. The study in [8] found hybrid quantum gates
that, when considered to be controlled by and act on three level quantum systems define the
hybrid Toffoli, Swap and Not gates used in this paper. The physical realization of these
hybrid gates might be accomplished via spin systems [8, 11] or quantum harmonic oscillators

0305-4470/06/247763+11$30.00 © 2006 IOP Publishing Ltd Printed in the UK 7763

http://dx.doi.org/10.1088/0305-4470/39/24/013
mailto:guowu@cs.pdx.edu
mailto:xie@cs.pdx.edu
mailto:song@ece.pdx.edu
mailto:mperkows@ece.pdx.edu
http://stacks.iop.org/JPhysA/39/7763


7764 G Yang et al

[8, 11]. A universal set of ternary quantum gates enables the realization of any tristate
switching network using candidate qudit implementation.

The computer science community has experienced interest in the universal sets of gates
required for quantum computing systems; the main results of which appear in [12–19]. We
observe that the universality discussed in the literature has an assumption that the inputs
of gates can be set to constant values, thus ancilla bits are used [18, 19]. These synthesis
approaches can be applied to large functions but their disadvantage is that they create m ancilla
bits (one for each output) and use multi-input gates that may be expensive. Although [8]
discussed entanglement generation with and without ancilla qudits, [20] constructively proved
that all n-qudit ternary reversible circuits can be constructed by ternary Swap, ternary Not and
ternary Toffoli ((n − 1) qudits control another qudit, so it is an n-qudit gate) gates without
ancilla qudits, or by ternary NOT, controlled-NOT, multiply-two and Toffoli gates. [19] dealt
with the universality of general reversible multiple-valued logic gates under the assumption
that constant signals can be applied to arbitrary number of inputs. No one discussed yet the
universality of two-qudit ternary gates without ancilla qudits.

Group theory [21] has found particular use to generate reversible logic circuits
[13, 14, 16, 17]. The motivation of this paper is to find the universality of a gate family
[14, 16, 19, 20, 22] to be used in synthesis of ternary reversible circuits without ancilla bits.
We prove that 2-qudit ternary Swap, NOT and 1-controlled-Not gates [8] are universal for
realization of arbitrary ternary n × n reversible circuits without ancilla bits. The realization
approach is constructive, not search based. This result is significantly different from the
binary case. In binary reversible circuits, only a small per cent of reversible circuits can be
constructed by 2-qubit gates without ancilla qubits. In 3 × 3 reversible circuits, 33.3% can
be constructed; in 4 × 4 reversible circuits, only 3 × 10−6% can be constructed. Even using
3-qubit gates, only 50% of n × n binary reversible circuits can be constructed without ancilla
qubits [23].

The rest of this paper is organized as follows. In section 2, we introduce some basic
definition of ternary reversible circuit and the needed group theory notations, and terms. In
section 3, we show the universality of 2-qudit ternary reversible gates. In section 4, we give
two conjectures about the universality of d-level reversible gates. We conclude in section 5.

2. Ternary reversible circuit and permutation group

In this section, we first present some basic definitions of ternary reversible circuits and the
needed group theory notation and terms.

Definition 1 (ternary reversible circuit). Let A = {0, 1, 2}. A ternary logic circuit f with n
input variables, A1, . . . , An, and n output variables, P1, . . . , Pn, is denoted by f : An → An,
where 〈A1, . . . , An〉 ∈ An is the input vector and 〈P1, . . . , Pn〉 ∈ An is the output vector.
There are 3n different assignments for the input vectors. A ternary logic circuit f is reversible
if it is a one-to-one and onto function (bijection). A ternary reversible logic circuit with n
inputs and n outputs is also called an n-qudit ternary reversible gate. It realizes a ternary
reversible circuit. There are a total of (3n)! different n-qudit ternary reversible circuits.

We now introduce the concept of a permutation group and its relationship with reversible
circuits.

Definition 2 (permutation). Let M = {d1, d2, . . . , dk}. A bijection (one-to-one, and onto
mapping) of M onto itself is called a permutation on M. The set of all permutations on M
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Figure 1. Swap gate.

A NOT(A)=A+1 mod 3

Figure 2. Ternary NOT gate.

forms a group under composition of mappings, called a symmetric group on M. It is denoted
by Sk [21]. A permutation group is simply a subgroup [21] of a symmetric group.

A mapping s : M → M can be written as

s =
(

d1, d2, . . . , dk

di1 , di2 , . . . , di1

)
. (1)

Here we use a product of disjoint cycles as an alternative notation for a mapping [21]. For
example, (

d1, d2, d3, d4, d5, d6, d7, d8, d9

d1, d4, d7, d2, d5, d8, d3, d6, d9

)
(2)

can be written as (d2, d4)(d3, d7)(d6, d8). Denote ‘( )’ as the identity mappings direct wiring
and call this the unity element in a permutation group. The inverse mapping of mapping s is
denoted as s−1. As per convention, a product s ∗ t of two permutations applies mapping s
before t.

We order the 3n different n-input assignment vectors as

〈0, 0, . . . , 0〉, 〈1, 0, . . . , 0〉, 〈2, 0, . . . , 0〉, 〈0, 1, . . . , 0〉, . . . , 〈2, 2, . . . , 2〉,
and denote them by a1, a2, a3, . . . , am, where m = 3n. Thus an n×n ternary reversible circuit
is just a permutation in Sm (where m = 3n), and vice versa. A ternary reversible circuit is
called even (odd) reversible circuit if its corresponding permutation is even (odd) permutation.
Cascading two gates is equivalent to multiplying two permutations. In what follows, no
distinction between an n × n reversible gate and a permutation in Sm (where m = 3n) will be
made.

Definition 3 (Swap gate) (see figure 1). A Swap gate Ei,j exchanges the ith bit Ai and the j th
bit Aj , i.e. Pi = Aj, Pj = Ai;Pr = Ar, if r �= i, j .

Definition 4 (ternary NOT gate) (see figure 2). A Ternary NOT Gate Nj is defined as
Pj = Aj ⊕3 1, where ⊕3 stands for addition modulo 3; Pi = Ai, if i �= j. 1 � j � n.

Definition 5 (ternary k-controlled-NOT gate). A ternary k-controlled-NOT gate Ci1,i2,...,ik;j is
defined as

• If m �= j , then Pm = Ci1,i2,...,ik;j (Am) = Am.



7766 G Yang et al

A

B

A

If A=2, B+1 mod 3

else  B.

Figure 3. 1-Controlled-NOT gate.

• If m = j and Ai1 = · · · = Aik = 2, then Pj = Ci1,i2,...,ik;j (Aj ) = Aj ⊕3 1; else,
Pj = Aj .

Remark 1. A ternary k-controlled-NOT gate Ci1,i2,...,ik;j means the j th qudit Aj is controlled
by the qudits Ai1 , . . . , Aik ; only the qudit Aj may change its value after the action of the
ternary k-controlled gate.

3. Universality of 2-qudit ternary gates

In this section, we prove that ternary Swap, NOT and 1-controlled-NOT (see figure 3) gates are
universal for realization of arbitrary ternary n-qudit reversible circuits without ancilla qudits,
and all even ternary n-qudit reversible circuits can be constructed by ternary NOT and ternary
1-controlled-NOT gates without ancilla qudits.

For concise representation, we denote Cj the (n − 1)-controlled-NOT gate whose j th
qudit is controlled by the other n − 1 qudits.

Lemma 1. All even n-qudit (n � 2) ternary reversible circuits can be generated by 1-qudit
ternary NOT gate and n-qudit ternary (n − 1)-controlled-NOT gate without ancilla qudits.

The proof of lemma 1 is given in the appendix. The proof is similar to the proof of
lemma 4 in [20]. We do not need to use Swap gate because here the controlled qudit in the
(n − 1)-controlled-NOT gate can be connected to any qudit.

Lemma 2. All n-qudit (n � 2) ternary reversible circuits can be generated by 2-qudit ternary
NOT, Swap gates and n-qudit ternary (n − 1)-controlled-NOT gate without ancilla qudits.

Proof. A Swap gate is an odd permutation [20]. Combining with lemma 1, we have: all n-
qudit (n � 3) ternary reversible circuits can be generated by 2-qudit ternary NOT, Swap gates
and n-qudit ternary (n − 1)-controlled-NOT gate without ancilla qudits. �

Lemma 3. If n � 5, and 3 � k � n − 2, then any k-controlled-NOT gate can be constructed
by 2-controlled-NOT gates.

Proof. We prove this lemma by an induction on k.

Case 1. Any 3-controlled-NOT gate can be constructed by 2-controlled gates.
Let Ci1,i2,i3;j be a 3-controlled-NOT gate.
Let h �= i1, i2, i3, j. (Because n � 5, so this is possible.)
Consider Ci1,i2;h and Ch,i3;j .
We will prove(

Ci1,i2;h ∗ Ch,i3;j
)3 = Ci1,i2,i3;j .
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• Subcase 1. m �= j, h.
Obviously,

Ci1,i2,i3;j (Am) = Am, Ci1,i2;h(Am) = Am, Ch,i3;j (Am) = Am.

Thus (
Ci1,i2;h ∗ Ch,i3;j

)3
(Am) = Am = Ci1,i2,i3;j (Am).

• Subcase 2. m = h.

Obviously,

Ci1,i2,i3;j (Ah) = Ah.

(1) If Ai1 = Ai2 = 2, then Ci1,i2;h(Ah) = Ah ⊕3 1.(
Ci1,i2;h ∗ Ch,i3;j

)
(Ah) = Ch,i3;j (Ah ⊕3 1) = Ah ⊕3 1. (3)

So (
Ci1,i2;h ∗ Ch,i3;j

)3
(Ah) = Ah ⊕3 1 ⊕3 1 ⊕3 1 = Ah.

(2) Else, (
Ci1,i2;h ∗ Ch,i3;j

)3
(Ah) = Ah.

Therefore, we have(
Ci1,i2;h ∗ Ch,i3;j

)3
(Ah) = Ah = Ci1,i2,i3;j (Ah).

• Subcase 3. m = j

(1) If Ai1 = Ai2 = Ai3 = 2, then
Ci1,i2,i3;j (Aj ) = Aj ⊕3 1.

And(
Ci1,i2;h ∗ Ch,i3;j

)
(Aj ) = Ch,i3;j (Aj ) =

{
Aj ⊕3 1, if Ah = 2
Aj , else

(4)

From (3), we know that in Ah,
(
Ci1,i2;h ∗ Ch,i3;j

)
(Ah),

(
Ci1,i2;h ∗ Ch,i3;j

)2
(Ah), there

is only one situation such that the value is 2. Therefore, by using (4), we have(
Ci1,i2;h ∗ Ch,i3;j )

3(Aj ) = Aj ⊕3 1 = Ci1,i2,i3;j (Aj ).

(2) If Ai1 = Ai2 = 2, but Ai3 �= 2. Obviously,
Ci1,i2,i3;j (Aj ) = Aj .

And, (
Ci1,i2;h ∗ Ch,i3;j

)
(Aj ) = Ch,i3;j (Aj ) = Aj .

So, (
Ci1,i2;h ∗ Ch,i3;j

)3
(Aj ) = Aj = Ci1,i2,i3;j (Aj ).

(3) If Ai3 = 2, but Ai1 �= 2, or Ai2 �= 2.
Obviously,

(
Ci1,i2;h ∗Ch,i3;j

)
(Ah) = Ch,i3;j (Ah) = Ah. Namely, the hth qudit Ah will

not change. So,
– if Ah = 2, then

(
Ci1,i2;h ∗ Ch,i3;j

)
(Aj ) = Aj ⊕3 1, thus(

Ci1,i2;h ∗ Ch,i3;j
)3

(Aj ) = Aj ⊕3 1 ⊕3 1 ⊕3 1 = Aj = Ci1,i2,i3;j (Aj ).

– else, then
(
Ci1,i2;h ∗ Ch,i3;j

)
(Aj ) = Aj , thus(

Ci1,i2;h ∗ Ch,i3;j
)3

(Aj ) = Aj = Ci1,i2,i3;j (Aj ).

(4) If no value of Ai1 , Ai2 , Ai2 is 2, obviously,(
Ci1,i2;h ∗ Ch,i3;j

)3
(Aj ) = Aj = Ci1,i2,i3;j (Aj ).

Thus,
(
Ci1,i2;h ∗ Ch,i3;j

)3 = Ci1,i2,i3;j .
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Case 2. Assume any t-controlled-NOT gate can be constructed by (t − 1)-controlled gates.
Consider a (t + 1)-controlled-NOT gate Ci1,i2,...,it ,it+1;j . t + 1 � n − 2. So, we can set
h �= i1, . . . , it , i(t+1), j , and h � n (this is to say that we can find a qudit different from the
qudits wired this (t + 1)-controlled-NOT gate).

Similarly to case 1, we have(
Ci1,i2,...,it ;h ∗ Ch,i(t+1);j

)3 = Ci1,...,it ,i(t+1);j .

This equation means that a (t + 1)-controlled-NOT gate can be constructed by a t-controlled-
NOT gate and a 2-controlled-NOT gate.

Combining cases 1 and 2, lemma 3 holds. �

Remark 2. This result is similar to binary reversible control gates.

Lemma 4. Any 2-controlled gate can be constructed by 1-controlled-NOT gates.

Proof. Consider a 2-controlled-NOT gate Ci1,i2;j . We will use an algorithm minimum-length-
representation (MLR) [24] implemented in a package GAP [25] to construct this 2-controlled-
NOT gate. GAP (groups, algorithms and programming) is a system for computational discrete
algebra, which is especially efficient for solving group theory problems. MLR is basically a
breadth-first algorithm to realize any given reversible circuit by using minimal number of gates
in a library. MLR includes some optimal approach to improve computation performance-based
the property of reversible circuits, such as removing circuits which have been searched in the
previous level and merging same circuits in the same level.

First, in order to save the memory, we set n = 3. Then we map an input assignment
[A1, A2, A3] to a positive integer 1 + A1 + 3A2 + 9A3. Thus we get a one-to-one mapping from
n-qudit ternary reversible circuits to a 3n symmetry group S3n . For instance,

C1,2;3 = (9, 18, 27),

C1;3 = (3, 12, 21)(6, 15, 24)(9, 18, 27),

C2;3 = (7, 16, 25)(8, 17, 26)(9, 18, 27),

C1;2 = (3, 6, 9)(12, 15, 18)(21, 24, 27),

C3;2 = (19, 22, 25)(20, 23, 26)(21, 24, 27),

E1,2 = (2, 4)(3, 7)(6, 8)(11, 13)(12, 16)(15, 17)(20, 22)(21, 25)(24, 26),

N1 = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21)

(22, 23, 24)(25, 26, 27).

Using the algorithm MLR and GAP, we get

C1,2;3 = C1;2 ∗ C3;2 ∗ C2;3 ∗ C1;3 ∗ C3;2 ∗ C2;3 ∗ C3;2 ∗ C1;3
∗C1;2 ∗ C1;3 ∗ C3;2 ∗ C2;3 ∗ C3;2 ∗ C1;3 ∗ C2;3 ∗ C3;2 ∗ C1;2

Consider that the symmetry of the controlled gates and the other n − 3 qudits beyond the
qudits Ai1 , Ai2 , Aj will not change after 1-controlled-NOT gates action in these three qudits and
will not affect these 1-controlled-NOT gates. We give the construction of 2-controlled-NOT
gate Ci1,i2;j below:

Ci1,i2;j = Ci1;i2 ∗ Cj ;i2 ∗ Ci2;j ∗ Ci1;j ∗ Cj ;i2 ∗ Ci2;j ∗ Cj ;i2 ∗ Ci1;j
∗Ci1;i2 ∗ Ci1;j ∗ Cj ;i2 ∗ Ci2;j ∗ Cj ;i2 ∗ Ci1;j ∗ Ci2;j ∗ Cj ;i2 ∗ Ci1;i2 . (5)

Thus, lemma 4 holds. �



Universality of 2-qudit ternary reversible gates 7769

Remark 3. This result is different from binary reversible controlled gates. In binary reversible
circuits, 2-controlled-NOT gate (2-qubit Toffoli gate) cannot be constructed by 1-controlled-
NOT gate (Feynman gate) even using extra qubit. Interestingly, 2-qubit Toffoli gate can be
constructed from 1-controlled-NOT, square-root-NOT and square-root-NOT adjoint gates [3].
In the binary case, one has to go outside the realm of reversible logic, to quantum operations,
while in the ternary case this is not necessary and it is sufficient to stay within multiple-valued
reversible domain. This may have application to future non-quantum reversible technologies
that would rely on 2-bit gates only! Ternary logic will have a clear advantage over the binary
logic. However, it also has a disadvantage with respect to binary logic: in ternary logic a
Swap gate cannot be synthesized with the help of a finite number of controlled-NOT gates,
whereas in binary logic a Swap gate can be replaced by a cascade of merely three 1-controlled-
NOT gates.

Lemma 5. Any (n − 1)-controlled-NOT gate can be constructed by (n − 2)-controlled-NOT
gates when n � 3.

Proof. Consider a (n − 1)-controlled-NOT gate Ci1,i2,...,in−1;j .
We denote ix = i3, . . . , in−1 for simple expression if n > 3. For instance, Ci1,i2,...,in−1;j =

Ci1,i2,ix ;j . We will prove that

Ci1,i2,ix ;j = Ci1,ix ;i2 ∗ Cj,ix ;i2 ∗ Ci2,ix ;j ∗ Ci1,ix ;j ∗ Cj,ix ;i2

∗Ci2,ix ;j ∗ Cj,ix ;i2 ∗ Ci1,ix ;j ∗ Ci1,ix ;i2 ∗ Ci1,ix ;j ∗ Cj,ix ;i2

∗Ci2,ix ;j ∗ Cj,ix ;i2 ∗ Ci1,ix ;j ∗ Ci2,ix ;j ∗ Cj,ix ;i2 ∗ Ci1,ix ;i2 . (6)

If n = 3, equation (6) becomes equation (5). So it is true.
If n > 3,

• if there is a qudit Am in Aix whose value is not 2. According to definition 5 of controlled
gate, for any input qudit Ah, the output value Ph, no matter under the action of the left of
equation (6) or the right, will not change.

• if all qudits in Aix whose values are 2, then all qudits in Aix will keep the value 2 under the
action of these 2-controlled-NOT gates on the right-hand side of equation (6). Therefore,
only three qudits Ai1 , Ai2 , Aj will change their values in the action of the controlled gates
in equation (6). The process is the same as equation (5).

Therefore, equation (6) holds. That is to say, lemma 5 is true. �

Theorem 1. All n-qudit (n � 2) ternary reversible circuits can be generated by 2-qudit
ternary gates: Swap, NOT and 1-controlled-NOT gates without ancilla qudits.

Proof. We will prove this theorem by the value case of n.

Case 1. n = 2. It is lemma 2.

Case 2. n = 3. From lemmas 2 and 4 this theorem is true.

Case 3. n = 4. Lemma 5 tells us that 3-controlled-NOT gate can be constructed by 2-
controlled-NOT gate, and lemma 4 tells us that 2-controlled-NOT gate can be constructed by
1-controlled-NOT gate. Invoking lemma 2, this theorem is true.

Case 4. n � 5. Lemma 5 tells us that (n − 1)-controlled-NOT gate can be constructed by
(n − 2)-controlled-NOT gate, and lemma 3 tells us that (n − 2)-controlled-NOT gate can be
constructed by 2-controlled-NOT gate. Invoking lemmas 4 and 2, this theorem is true.

Combining these four cases, we finish the proof of theorem 1. �
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Remark 4. In binary reversible logic, the result is very different. Without adding ancilla bits,
using 2-qubit gates (Not, Swap, 1-CNOT gates, etc) as the synthesis library, only 33.3% of all
3-qubit reversible functions can be synthesized, and only 3 × 10−6% of all 4-qubit reversible
functions can be synthesized.

Corollary 1. If a set of k-qudit ternary reversible gates can generate all k-qudit ternary
reversible circuits without ancilla qudit, then all n-qudit (n > k) ternary reversible circuits
can be generated by these k-qudit ternary reversible gates without ancilla qudits.

Proof. A set of k-qudit ternary reversible gates can generate all k-qudit ternary reversible
circuits without ancilla qudit. Thus, Swap, NOT, 1-controlled-NOT gates can be generated by
these gates. Invoking theorem 1, this corollary holds. �

Definition 6 (ternary multiply-two gate). A ternary multiply-two gate MTi is defined as:
Pi = Bi ⊗3 2; Pm = Bm, if m �= i, where ⊗3 is the operation of multiplication by modulo 3.
1 � i � n.

Corollary 2. All n-qudit ternary reversible circuits can be generated by Not, 1-controlled-Not
and multiply-two gates without ancilla qudits.

Proof. Using algorithm MLR in [24], we obtain

Ei;j = MTi ∗ Cj ;i ∗ Ci;j ∗ Ci;j ∗ MTj ∗ Ci;j ∗ Cj ;i ∗ Cj ;i ∗ MTi ∗ Cj ;i ∗ Ci;j ∗ Ci;j .

Therefore, all n × n ternary reversible circuits can be generated by Not, 1-controlled-Not,
multiply-two gates without ancilla qudits. �

Theorem 2. All even n-qudit (n � 2) ternary reversible circuits can be generated by 2-qudit
ternary gates: NOT and 1-controlled-NOT gates without ancilla qudits.

Proof. This is a direct result in terms of lemmas 1, 3, 4 and 5. �

4. Conjecture

In this section, we give some conjectures about the universality of general multiple-valued
logic gates without ancilla qudits.

Definition 7 (d-level reversible circuit). Let A = {0, 1, . . . , d}. A d-level logic circuit f with n
input variables, A1, . . . , An, and n output variables, P1, . . . , Pn, is denoted by f : An → An,
where 〈A1, . . . , An〉 ∈ An is the input vector and 〈P1, . . . , Pn〉 ∈ An is the output vector.
There are dn different assignments for the input vectors. A d-level logic circuit f is reversible
if it is a one-to-one and onto function (bijection). A d-level reversible logic circuit with n
inputs and n outputs is also called an n-qudit d-level reversible gate. There are a total of (dn)!
different n-qudit d-level reversible circuits.

Definition 8 (d-level NOT gate). A d-level NOT gate Nj is defined as Pj = Aj ⊕d 1, where
⊕d stands for addition modulo d; Pi = Ai, if i �= j. 1 � j � n.

Definition 9 (d-level k-controlled gate). A d-level k-controlled gate Ci1,i2,...,ik;j is defined as

• If m �= j , then Pm = Ci1,i2,...,ik;j (Am) = Am.

• If m = j and Ai1 = · · · = Aik = 2, then Pj = Ci1,i2,...,ik;j (Aj ) = Aj ⊕d 1, else, Pj = Aj .
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Table 1. Encoding input vectors of 2-qudit reversible circuit.

A1 A2 Encode

0 0 x1

1 0 x2

2 0 x3

2 1 x4

1 1 x5

0 1 x6

0 2 x7

1 2 x8

2 2 x9

Conjecture 1. If d is an odd prime number, then all n-qudit (n � 2) d-level reversible circuits
can be generated by 2-qudit d-level gates: Swap, d-level NOT and d-level 1-controlled-NOT
gates without ancilla qudits.

Conjecture 2. If d is an odd prime number, then all even n-qudit (n � 2) d-level reversible
circuits can be generated by 2-qudit d-level gates: d-level NOT and d-level 1-controlled-NOT
gates without ancilla qudits.

5. Conclusions

We demonstrated that ternary Swap, NOT and 1-controlled-NOT gates are universal for
realization of arbitrary ternary n-qudit reversible circuits without ancilla qudits, and all even
ternary n-qudit reversible circuits can be constructed by ternary NOT and ternary 1-controlled-
NOT gates without ancilla qudits. The realization approach is constructive and can be further
used to develop software for synthesis of arbitrary d-level circuits without ancilla qudits. Our
results demonstrated that ternary reversible circuits have very different properties than binary
reversible circuits. In binary reversible circuits, only a small per cent of reversible circuits can
be constructed by 2-qubit gates without ancilla qubits. In 3 × 3 reversible circuits, 33.3% can
be constructed; in 4 × 4 reversible circuits, only 3 × 10−6% can be constructed. Even using
3-qubit gates, only 50% of n × n binary reversible circuits can be constructed without ancilla
qubits. We gave two conjectures about the universality of general d-level reversible gates.
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Appendix. Proof of lemma 1

Lemma 1. All even n-qudit (n � 3) ternary reversible circuits can be generated by 1-qudit
ternary NOT gate and n-qudit ternary (n − 1)-controlled-NOT gate without ancilla qudits.

Proof. Similar to the binary reflective Gray code [26], we can also reflectively encode the
ternary vectors in an order x1, x2, . . . , xm, where m = 3n such that there is only one bit
different between two vectors xi and xi+1, for 1 � i � m − 1. For instance, if n = 2, all nine
input vectors can be encoded in table 1 thorough reflecting the column (0, 1, 2)T two times
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for qudit A1 and adding three 0’s, three 1’s and three 2’s for qudit A2. If n = 3, then reflect
table 1 two times and add nine 0’s, nine 1’s and nine 2’s for qudit A3.

(xi, xi+1, xi+2) where 1 � i � m − 2 are called a neighbouring 3-cycle. All even
permutations can be decomposed to a product of some neighbouring 3-cycles [21]. Therefore
we only need to prove that every neighbouring 3-cycles (xi, xi+1, xi+2) can be constructed by
NOT and (n − 1)-controlled-NOT gates without ancilla qudits.

There are at most two different qudits among xi, xi+1, xi+2. We can assume that the same
qudits among xi, xi+1, xi+2 are valued 2. The reason is the following. If the first qudit among
xi, xi+1, xi+2 is not 2. Let yk be the vector whose first qudit is 2, and the other qudits are the
same as those in xk, k = i, i + 1, i + 2. If the first qudit among xi, xi+1, xi+2 is valued 0, then
(xi, xi+1, xi+2) = N1 ∗N1 ∗ (yi, yi+1, yi+2) ∗N1. If the first qudit among xi, xi+1, xi+2 is valued
1, then (xi, xi+1, xi+2) = N1 ∗ (yi, yi+1, yi+2) ∗ N1 ∗ N1.

Case 1. There is only one different qudit Aj among xi, xi+1, xi+2.
There are only two situations for the qudit Aj ’s values of xi, xi+1, xi+2: 0, 1, 2 or 0, 2, 1.
In the first situation, (xi, xi+1, xi+2) = Cj .
In the first situation, (xi, xi+1, xi+2) = Cj ∗ Cj .

Case 2. There are two different qudit Aj and Ak among xi, xi+1, xi+2. Similar to subcases 2
and 1 in case 2 in the proof of lemma 4 in [20], using NOT and (n− 1)-controlled-NOT gates,
change the two different values of Aj to three different values, then change the two different
values to the same value. This becomes case 1. Change the order of the vectors by Cj or Cj ∗Cj .
Finally, using the inverses of NOT and (n − 1)-controlled-NOT gates, we get the construction
of (xi, xi+1, xi+2) by NOT and (n−1)-controlled-NOT gates without ancilla qudits (the inverse
property: (Ni)

−1 = Ni ∗ Ni, (Ni ∗ Ni)
−1 = Ni, (Ci)

−1 = Ci ∗ Ci, (Ci ∗ Ci)
−1 = Ci). �

The following example illustrates this process.
Let n = 3, u = 〈2, 0, 2〉, s = 〈2, 1, 2〉, t = 〈1, 1, 2〉.

u

s

t


 =


2, 0, 2

2, 1, 2
1, 1, 2


 C2 ∗ C2

→


2, 2, 2

2, 0, 2
1, 1, 2





Change the values

ofA2to three
different values




N2

→


2, 0, 2

2, 1, 2
1, 2, 2


 C1

→


2, 0, 2

2, 1, 2
2, 2, 2





 Change the

values ofA1

to the same value





 Now it

becomes
case1




C2

→


2, 1, 2

2, 2, 2
2, 0, 2





 This changes

the order of
the three vectors





 Then use the inverses of

Ni and Ci before this C2

to complete the construction.




Therefore,

(u, s, t) = C2 ∗ C2 ∗ N2 ∗ C1 ∗ C2 ∗ C1 ∗ C1 ∗ N2 ∗ N2 ∗ C2.

In the above equation the latter part C1 ∗ C1 ∗ N2 ∗ N2 ∗ C2 is the inverse of the former
part C2 ∗ C2 ∗ N2 ∗ C1.
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